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History and Motivation

The goal of these notes is to give an introduction to actions of higher-rank abelian and
semisimple Lie groups. Examples of such groups include Rk × Zℓ and SLd(R), respectively.

We begin with a technical definition. Factors of dynamical systems are well-studied, even in
rank 1. However, a special type of factor can occur when part of the group acts trivially on the
factor.

Definition 0.1. Let G X be a C∞ group action on a smooth manifold X. We say that an
action H Y is a C∞ factor of G X if there exists a submersion π : X → Y and a surjective
homomorphism σ : G → H such that

π(g.x) = σ(g).π(x)

for all g ∈ G and x ∈ X.
• If every factor of G X is finite-to-one, we say that the action is irreducible.
• If every factor of G X has ker σ = G or {e}, we say that the action is group-
irreducible.

• If G/ ker σ is a compact extension of Z or a reductive Lie group of real rank 1 (eg, SL2(R)
or R), then we say that the factor has rank one.

When seeking new or “genuine” actions of groups which are not built from combining flows
or diffeomorphisms, it is natural to ask for the action to not have rank one factors, or more
strongly, for the action to be group-irreducible if the action shouldn’t be built from a factor
group.
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Example 0.2
Consider an action by Zk on a torus Td generated by pairwise commuting matrices
A1, · · · , Ak ∈ SLd(Z). Then the action

• is irreducible when there does not exist a nontrivial common rational invariant
subspace V ⊂ Rd.

• is group irreducible if whenever V ⊂ Rd is a common rational invariant subspace,
the action of Ai on Rd/V is either faithful or trivial

• has a rank one factor if and only if there exists a common invariant rational subspace
V ⊂ Rd such that the induced action on Rd/V is generated by at most one infinite
order matrix.

Some concrete examples are that
• Z2 T4 = T2 × T2 defined by (m, n).(x, y) = (Amx, Any) is not irreducible or
group irreducible, and has two rank one factors

• If α : Z2 T3 is generated by matrices A1 and A2 which commute and have three
distinct real, irrational eigenspaces, then the action is both irreducible and group
irreducible. A specific example is

A1 =

[
0 0 1
1 0 5
0 1 2

]
A2 =

[
1 −1 1
3 −4 4
−1 1 −2

]
• The action β : Z2 T3 × T3 which is the product action of the previous example
with itself β(m, n).(x, y) = (α(m, n).x, α(m, n).y) is group irreducible, but not
irreducible and has no rank one factors

• The action γ : Z4 T3 × T3 which is the product action defined by

γ(m1, n1, m2, n2).(x, y) = (α(m1, n1).x, α(m2, n2).y)

is neither irreducible, nor group irreducible, but has no rank one factors.
• The action δ : Z2 T3 × T2 defined by

δ(m, n).(x, y) = (α(m, n)x, Am+ny)

has only one rank one factor.

The guiding philosophy of the higher-rank rigidity program is to run away from the headaches
of classical hyperbolic theory: low regularity of foliations and conjugacies, orbit equivalences
which are not conjugacies, a complicated cohomology theory with many nontrivial invariants
and the corresponding thermodynamical formalism. All of these nuances (usually) disappear
when the action is sufficiently far away from rank one actions (ie, has no rank one factors).
We do not provide comprehensive references on the study of rigidity for (partially) hyperbolic
group actions, but refer to David Fisher’s survey on the Zimmer program and Ralf Spatzier’s
summary of the history and recent progress on the work of Zhiren Wang. The introductions of
the following papers also summarize recent progress in the setting of abelian and semisimple
group actions, respectively: Cartan actions of abelian groups and their classification and The
Zimmer program for partially hyperbolic actions (the latter paper is what Lecture 2 is based on).

The context of these lectures is a continuation of theorems in these traditions: analyzing the
structure and rigidity phenomena for actions without rank one factors.

Acknowledgement. I would like to thank Kurt Vinhage for his valuable feedback and for
contributing several clarifications and additions to these notes. I also thank Disheng Xu for
helpful comments and contributions to the text.
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§1 Lecture 1: Fundamentals of partially hyperbolic abelian
group actions

Let α : Rk × Zℓ X be an action by C∞ diffeomorphisms which is locally free. Fix a
distribution Ec on X. An element a ∈ Rk × Zℓ is Ec-partially hyperbolic if there exist two
distributions Es

a, Eu
a ⊂ TX such that

TX = Es
a ⊕ Ec ⊕ Eu

a

is an a-invariant dominated splitting with a|Es
a
contacting and a|Eu

a
expanding. We let PH(Ec)

denote the set of Ec-partially hyperbolic elements. If Ec = TO, where O is the Rk-orbit
foliation, we call a Anosov.

Example 1.1
1. (k, ℓ) = (1, 0) corresponds to Anosov / partially hyperbolic flows.
2. (k, ℓ) = (0, 1) corresponds to Anosov / partially hyperbolic diffeomorphisms.

Lemma 1.2
Let t ∈ R \ { 0 } . If a ∈ Rk × Zℓ is Anosov or Ec-partially hyperbolic and ta ∈ Rk × Zℓ,
then ta is Anosov or Ec-partially hyperbolic respectively.

Common stable foliations.

Theorem 1.3 (Hirsch-Pugh-Shub)

If a ∈ Rk × Zℓ is Anosov or Ec-partially hyperbolic, then E∗
a integrates to a Hölder

foliation with C∞-leaves for ∗ = s, u.

Remark 1.4 If b ∈ Rk × Zℓ then db(Ea∗) = E∗
a . This is because db(E∗) is also an

invariant distribution for a forming a new dominated splitting by the commutativity of a
and b.

Now we look at the sequence of maps

b : W s
a(x) → W s

a(b(x)) → W s
a(b

2(x)) → · · · .

Theorem 1.5
If a1, · · · , am are Ec-partially hyperbolic or Anosov, then

W s
a1,··· ,an

(x) := W s
a1
(x) ∩W s

a2
(x) ∩ · · · ∩W s

an
(x)

is a Hölder foliation with C∞ leaves.

Definition 1.6. A foliation W is a coarse Lyapunov foliation if there exist a1, · · · , an ∈
Rk ×Zℓ such thatW = W s

a1,··· ,an
, dim(W) ⩾ 1 and for every Ec-partially hyperbolic element

a ∈ Rk × Zℓ, W subfoliates either W s
a or Wu

a . We let ∆ denote an indexing set for the coarse
Lyapunov foliations and if χ ∈ ∆, let Wχ denote the foliation corresponding to χ.
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Corollary 1.7
For every a ∈ Rk × Zℓ which is Ec-partially hyperbolic, there exists a decomposition
∆ = ∆−(a) ⊔ ∆+(a) such that

Es
a =

⊕
χ∈∆−(a)

TWχ and Eu
a =

⊕
χ∈∆+(a)

TWχ.

Example 1.8
Let ψt M and φs N be Anosov flows. Let α be the R2-action induces by ψt × φs acting
on M × N. The coarse Lyapunov foliations are W s/u

ψ and W s/u
φ on M × N.

Example 1.9
α : R2 SL3(R)/Γ by

α(t1, t2)gΓ =

[
et1

et2

et3

]
gΓ.

The coarse Lyapunov foliations areW ij(x) = (id + Eij(R))(x), where Eij(s) denotes the
matrix with s in the (i, j)-entry and zeros elsewhere.

Focus on Rk. How does PH(Ec), the set of Ec-partially hyperbolic elements, look?

Definition 1.10. An open convex cone in Rk is an open subset C such that for every t > 0,
tC = C and C is convex.

If f : V → W is an invertible map between normed vector spaces, let

m( f ) = min
v∈V

∥ f (v)∥W/∥v∥V = ∥ f−1∥−1

be the conorm of f . Then let

C−(W) :=

{
a ∈ Rk :

∥dα(na)|Ec(x)∥
m(dα(na)|TW (x))

⩽ e−nϵ for some ϵ > 0, every x ∈ X,

and sufficiently large n ∈ N

}
.

Lemma 1.11 C−(W) is an open convex cone.

Proof. By Lemma 1.2, it follows that C−(W) is invariant under positive rescaling. It therefore
suffices to show that if a, b ∈ C−(W), then a + b ∈ C−(W). Indeed, notice that
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∥dα(n(a + b))|Ec(x)∥
m(dα(n(a + b))|TW (x))

=
∥dα(na)|Ec(nb.x) · dα(nb)|Ec(x)∥

m(dα(na)|TW (nb.x) · dα(nb)|TW (x))

⩽
∥dα(na)|Ec(nb.x)∥

m(dα(na)|TW (nb.x))
· ∥dα(nb)|Ec(x)∥

m(dα(nb)|TW (x))
⩽ e−nϵ1 · e−nϵ2

= e−n(ϵ1+ϵ2)

Recall that ∆ denotes an indexing set for the coarse Lyapunov foliations, and we let Wχ

denote the foliation corresponding to χ ∈ ∆.

Corollary 1.12
PH(Ec) =

⋂
χ∈∆

(C−(Wχ) ∪ −C−(Wχ)), where PH(Ec) ⊂ Rk is the subset of Ec-

partially hyperbolic elements.

Definition 1.13. α is called totally partially hyperbolic or totally Anosov if PH(Ec) is
dense in Rk. (For the Zℓ-case, we replace this with a projectively dense condition.)

Exercise 1.14. Show that α is totally partially hyperbolic (or totally Anosov) if and only if
C−(W) is an open half space for every coarse Lyapunov foliation W

Oseledets theorem for Rk × Zℓ-actions. Assume that α preserves an ergodic measure µ.
There exists ∆ ⊂ (Rk × Zℓ)∗ and a splitting (recalling O is the foliation of Rk-orbits)

TX = TO ⊕
⊕
χ∈∆

Eχ
µ

such that for µ-almost every x, if v ̸= 0 ∈ Eχ
µ(x) then

lim
|a|→∞

log ∥dα(a)v∥ − χ(a)
|a| = 0.

(See [Brown-Rodriguez Hertz-Wang] for some detailed discussions on the topic of Oseledets
splittings for abelian actions.)

Remark 1.15 For every ergodic µ and coarse Lyapunov foliation W = W s
a1
∩ · · ·W s

an
,

we have
TW ⊂

⊕
χ(ai)<0

Eχ
µ .

If a1, · · · , an are Anosov then TW =
⊕

χ(ai)<0 Eχ
µ .

Let C−(χ) := { a : χ(a) < 0 } . Then

C−(W) ⊂
⋂

µ∈Mα,erg

⋂
Eχ

µ⊂TW
C−(χ).
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If α is totally Ec-partially hyperbolic then C−(W) = C−(χ) whenever χ is a Lyapunov
exponent associate to W . Since C−(χ1) = C−(χ2) if and only if χ1 = cχ2 for some c > 0, if
α is totally Ec-partially hyperbolic then for every W there exists a unique χ up to a positive
scalar multiple. In this case, we call the projectivized functional R+χ the exponent associated
to W , and denote W = Wχ.

Exercise 1.16. Show that if α is totally Ec-partially hyperbolic and there exist at least
two coarse Lyapunov functionals χ1 ̸= −χ2 ∈ (Rk)∗/R+, then dα|Ec has 0 Lyapunov
exponents with respect to any invariant measure.
[Hint: Show that for every coarse exponent χ, ker χ acts with 0 exponents on Ec.]
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§2 Lecture 2: Rigidity

Rigidity results, by Damjanovic-Spatzier-Vinhage-Xu. Assuming that:
• α : Rk X is totally Ec-partially hyperbolic and volume-preserving ergodic.
• α is super-accessible: for every χ and x, y there exists a path connecting x, y by finitely
many Wχi-segments where χi ̸= cχ for every i. This is equivalent to that there exists
a ∈ ker χ such that a is accessible.

Exercise 2.1. Show that if α is super-accessible, then the action has no rank one
factors.

• α ismeasurably Oseledets conformal: For every Wχ, dα|TWχ is measurably conju-
gated to

dα(a)|TWχ =


ec1χ(a)H1

ec2χ(a)H2
. . .

ecnχ(a)Hn

,

where Hi ∈ SOdi(R), ci ∈ R.

Theorem 2.2 (Damjanovic-Spatzier-Vinhage-Xu)

If α satisfying the assumptions above then α is C∞-conjugated to a translation action of
the form

β : Rk K\H/Γ

by a.KhΓ = K(ah)Γ and Rk ↪→ ZH(K) up to a finite cover.

The main application of Theorem 2.2 is to the setting of semisimple group actions. If G is
a semisimple Lie group, we say that G is geniunely higher-rank if every simple factor of G
has rank at least two. When G is genuinely higher-rank, and G X is a C∞-action, we can
restrict the action to an abelian subgroup known as a Cartan subgroup. When G = SLd(R)
with d ⩾ 3, the “canonical” Cartan subgroup is the group of diagonal matrices.

In this setting of genuinely higher-rank Lie group actions, super-accessibility is free, since
accessibility of one element implies the super-accessibility (exercise), and Zimmer’s cocycle
superrigidity theorem implies the action is measurably Oseledets conformal.

Corollary 2.3 (Damjanovic-Spatzier-Vinhage-Xu: G-actions)

Assume that G is a genuinely higher-rank semisimple Lie group, and α : G X is a
C∞-action such that
(1) α preserves a volume;
(2) α|A is totally partially hyperbolic, where A is the Cartan subgroup;
(3) α(a) is accessible for some partially hyperbolic a ∈ A.

Then there exists β : G K\H/Γ a translation action such that α is a finite factor of β.

Step 1. Invariance principle. (Ledrappier, · · · , Avila-Santamaria-Viana) Philosophy: over
an accessible partially hyperbolic system, invariant measurable objects are Hölder continuous
along stable / unstable manifolds. By the version of ASV (see also Kalinin-Sadovskaya), this
holds for matrix cocycles with 1-exponent. This implies that the derivatives are C0-trivializable
(in the sense of modulo a rotation).
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From now on, for simplicity we assume that Wχ is equipped with a C0-metric for which the
dynamics is conformal, and the derivative of a restricted to each Lyapunov subspace Eciχ is
eciχ(a)Rθi for some rotation matrix Rθi

Step 2. Homogeneous structure on each Wχ-leaf. We consider the action of ker χ on
Wχ(x) → Wχ(a.x). Since the derivative is C0-trivilizable and ker χ has zero exponents on
Wχ(x), we obtain an isometric action on Wχ(x) → Wχ(a.x). By the super-accessibility and
totally partially hyperbolic assumption, any generic element in ker χ is a volume preserving
accessible, center bunched partially hyperbolic diffeomorphism (exercise), hence by Burns-
Wilkinson’s theorem, ker χ’s action is transitive.

Given y ∈ Wχ(x), we can find ak ∈ ker χ such that ak.x → y. Each such sequence of maps
will converge to a single map f = limk→∞ ak : Wχ(x) → Wχ(x) such that f (x) = y. This
implies that Isom(Wχ(x)) acts transitively on Wχ(x) an isometric structure that compatible
with the action α and Isom(Wχ(x)) acts transitively on Wχ(x) (by a result of Wilson 1982).

Moreover, there is a uniform contracting diffeomorphism onWχ(x) that normalizes Isom(Wχ(x))
(some element a ∈ Rn with χ(a) < 0). This implies that the nilpotent radical of Isom(Wχ(x)),
denoted by Nχ

x , is a nilpotent group, and Nχ
x that acts simply transitively on Wχ(x).

Remark 2.4While the Nχ
x -actions seem like the actions we want, in fact they need to be

dualized. Indeed, if Nχ
x is nilpotent but not abelian, in the models, translation on nilpotent

groups are not isometries. However, they are generated by vector fields dual to isometries.
Thus, we should pass to the group generated by vector fields invariant under the action of
Nχ

x .

Step 3. Constructing an extension. In the previous step, we have constructed a transitive
Nχ

x -action on each leaf Wχ(x). The goal is to glue the Nχ
x -actions into a single action. The

problem is that there is no canonical way to choose the action of Nχ on different leaves. The
following example illustrates this obstruction for the model.

Example 2.5 (Baby case: the geodesic flow on H3/Γ)
The action is [

et

e−t

] { [
eiθ

e−iθ

]}
\SL2(C)/Γ.

When we want to parametrize the horospheres, we want to use[
1 z

1

] { [
eiθ

e−iθ

]}
\SL2(C)/Γ,

which does not exist (even though it does on the homogeneous space SL2(C)/Γ). This
problem persists in other translation models on K\G/Γ.

Thismodel also reveals the underlying cause of the problem: the action ofK =

{ [
eiθ

e−iθ

]}
.

The unit tangent bundle to H3/Γ is a bi-homogeneous space with this appearing as a left quo-
tient. Note that K commutes with the action of the diagonal acting group, but not with the
upper (or lower) triangular group. To build a horospherical action on the space, it is therefore
necessary to first recover the K-component. In the model case, this can be achieved by lifting
the action to the action on the frame bundle.
In general case, we also consider a fiber bundle over X. To simplify the construction, we

assume that there is only one exponent in each coarse Lyapunov distribution (i.e., α acts
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conformally on each Eχ). This is not needed, but simplifies the construction of the extension.
For each x ∈ X, we build a fiber

K̃x =
{

φ : Rd → TxWχ such that { φ(ei) } is an oriented orthonormal frame of TxWχ
}

.

Then SOd acts transitively on each K̃x by k.φ = φ ◦ k−1. Let X̃ to be the associated C0-fiber
bundle, which is a principle SOd-bundle. We define Rk X̃ by

[a.φ](v) =
dα(a)(φ(v))

eχ(a)
.

Exercise 2.6. Show that this gives a well-defined action on Rk-action on X̃ which lifts
the action on X and commutes with the SOd-action (i.e., the action is by bundle automor-
phisms).

Step 4. Path groups. In the final step, we need to build an action of a larger group H from
generating subgroups K̂, Rk and Nχ, χ ∈ ∆. Recall that we have three actions on the bundle X̃
we built last time:

• K̂ X̃, the structure group of principle bundle;
• Rk X̃, the lifted action by pushing framings;
• Nχ X̃, the nilpotent actions parametrizing Wχ-leaves.

Goal. “Glue” these actions into a single Lie group action H X̃.
To achieve this, we consider the free product

P = K̂ ∗ Rk ∗ ∗
χ∈∆

Nχ.

Free products of topological groups carry a unique topology defined through a universal
property, namely that each component group in the product embeds continuously, and any
family of continuous homomorphisms from the component group extends to a continuous
homomorphism from the free product. In particular, since group actions can be thought of as
continuous homomorphisms to diffeomorphism or homeomorphism groups, the actions of K̂,
Rk and Nχ induce an action of P .

Proposition 2.7
If StabP (x)◦ ◁ P then P factors through a Lie group action.

Observation 2.8. The set StabP (x)◦ is exactly the set of “contractible cycles”.

Proposition 2.9 StabP (x)◦ ◁ P if and only if StabP (x)◦ = StabP (y)◦ for every x, y.

To show constant cycle structure, we find “enough” constant cycles to generate StabP (x)◦ at
every point. In fact, one can show that there are two classes of cycles which are sufficient:
(1) Nχ ∗ N−χ-cycles: We consider a Nχ ∗ N−χ-cycle with the initial point x. Let y = a.x

for some a ∈ ker χ. Note that both N χ and N−χ actions commute with ker χ-actions.
The image of the cycle starting at x under the action of a forms the same cycle starting at
y (see the figure below). Consequently, cycles of this type are constant because of the
ker χ-transitivity.
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x
a

y

∈ Nχ

∈ N−χ

(2) Geometric commutators: Showing that the geometric commutators is the last step of the
proof and one of the most technical. Indeed, if u ∈ Nχ1 and v ∈ Nχ2 , then whenever
χ1(a), χ2(a) ⩽ 0, and at least one is stricly negative,

d(na.v−1u−1vu · x, na.x) → 0,

since at least one of u and v contract under a, and both are non-expanding. If follows
that v−1u−1vu · x is in the common stable manifold of x for such elements of Rk.

x
x′

u

v

u−1

v−1

W s
a(x)

Exercise 2.10. {λ ∈ ∆ : λ(a) < 0 whenever χ1(a), χ2(a) ⩽ 0 and χ1(a) +
χ2(a) < 0} is the same as the set Σ(χ1, χ2) = {tχ1 + sχ2 : t, s > 0} ∩ ∆ (in
particular, the second set is well-defined even though χ1 and χ2 are defined only up
to positive scalar).

One must then make a careful analysis of the terms which appear in the “commutator,” finding
a unique way to express them in terms of the exponents in Σ(χ1, χ2), and leveraging that the
commutators end up satisfying a type of cocycle equation over the Nχi -actions, i = 1, 2. Under
the simplifying conformality assumption made after Example 2.5, this becomes much simpler
and follows a scheme in a precursor to this proof by Spatzier and Vinhage when the foliations
are one-dimensional. Otherwise, several inductions need to be set up to establish polynomial
forms of the geometric commutators.

We make a brief outline of the scheme with the simplifying conformality assumption. This in
particular implies that each group Nχ is abelian, so we write them additively. The trick is to use
induction on #Σ(χ1, χ2). Indeed, when Σ(χ1, χ2) = ∅, the groups Nχ1 and Nχ2 commute. Let
us move one step into the induction, and assume that there exists a unique λ between χ1 and
χ2, so λ = tχ1 + sχ2. In this case, if we let ρ(u, v, x) be element of Nλ required to complete
the geometric commutator shown above, one may show that ρ satisfies a cocycle property:

ρ(u1 + u2, v, x) = ρ(u1, v, x) + ρ(u2, v, u.x). (2.1)

Furthermore, since the dynamics of Rk interacts with the nilpotent group actions in an exact
way, we also have that

etχ1(a)+sχ2(a)ρ(u, v, x) = ρ(eχ1(a)u, eχ2(a)v, a.x) (2.2)

A third more subtle property is crucial to the proof, namely that if ρ ̸≡ 0, then t, s ⩾ 1. This
property is called integral Lyapunov coefficients, since t and s must be at least an integer (and
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in the end, turn out to be integers exactly). This property will allow us to rearrange (2.1) and
rescale u2 to a unit vector with (2.2) with a ∈ ker χ2 to get a local Lipschitz property for ρ. In
particular, it will be differentiable almost everyone, and the derivative will be Rk-invariant. It
will follow that it is constant almost everywhere, and this is enough to get that ρ is linear.

The next inductive step follows similarly, with an extra twist. When there are multiple
exponents between χ1 and χ2, when defining the completion one must specify an order in
which they appear. But when establishing something like (2.1), one must then rearrange the
weights inside Σ(χ1, χ2). These rearrangements cause commutators from prevous inductive
steps appear. The resulting cocycle-like equation becomes

ρ(u1 + u2, v, x) = ρ(u1, v, x) + ρ(u2, v, u1.x) + q(u1, u2, v) (2.3)

for some polynomial q : Nχ1 × Nχ2 → Nλ. The proof is completed as in the cocycle equation,
but ρ is no longer just a linear map, but polynomial. For example, the function ρ(u, v, x) = u2v
satisfies (2.3) with q(u1, u2, v) = 2u1u2v.

11
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§3 Lecture 3: Non-rigidity and partial rigidity

Consider the acton α : R2 X × Y, α = ψt × φs, where ψt, φs are volume-preserving
Anosov flows. We define an action β which shares the same orbits as α by:

β(t, s)(x, y) = (ψt(x), φs+σ(t,x)(y)),

where σ : R × X → R is a C∞-cocycle such that
(1)

∫
σ(t, x)dLeb(x) = 0 for every t;

(2) σ is not a coboundary (this is equivalent to
∫

σ(t, x)dµ(x) ̸= 0 for some µ).
For the action α, every (t, s) ∈ R2 not on the axes is an Anosov element.

α

t

s

β

t

s

Anosov elements
Non-uniformly hyperbolic elements
(for the volume measure)

On the other hand, every (t, s) ∈ R2, we have β(t, s) is uniformly hyperbolic if and only if
t ̸= 0 and

|s| >
∫

σ(t, x)dµ(x)

for every invariant measure µ. Thus, the action has Anosov elements, but is not totally Anosov.

Remark 3.1 The action of the horizontal axis R × {0} is a classical example of a smooth
system which is K but not Bernoulli. This is an adaptation of the (T, T−1) Kalikow example
adapted to the smooth setting by Rudolph. It is worth noting that every C∞-example of K
non-Bernoulli are elements of partially hyperbolic Z × R or R2-actions.

Question 3.2
Fix r ⩾ 0. If f : X → X is C∞, volume preserving, K, but not Bernoulli, does Zr( f )/ ⟨ f ⟩
contain a copy of R? If f : X → X is C∞, volume preserving, K, non-Bernoulli, and
partially hyperbolic, can f also be accessible?
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Theorem 3.3 (Vinhage)

There exist “genuine” R2-time changes of product actions such that for every coarse
W , C−(W) are properly contained in a half space. Consequently, this action is group-
irreducible (i.e. has no factors).

Sketch of Proof. The idea is to imitate Rudolph’s example, but shrink both Lyapunov half-spaces
simultaneously. Note that we can’t do this iteratively: once we change from a direct product to
a skew product, we can’t consider a cocycle depending only on the vertical coordinate. Instead,
one must define reparameterization of R2-orbits all at once. Indeed, one may check that if
τ : R2 × X → R2 is a smooth function, when the family of transformations

ατ(a).x = α(τ(a, x)).x

defines an action, τ is a cocycle over ατ . This presents a complication when defining actions
using cocycles, but notice that if τx(a) = τ(a, x), then τ−1(a, x) := (τ−1

x (a), x) is a cocycle
over α. In fact, given any cocycle β over α such that βx is a diffeomorphism of R2 for every x,
one may perform this inversion operation to make a time change.

The resulting set of uniformly and non-uniformly hyperbolic elements for perturbations can
be made to look as following:

t

s

Remark 3.4 As discussed at the beginning of the notes, it was believed that group-
irreducible Anosov higher rank actions were all homogeneous. This theorem states that an
group-irreducible Anosov higher rank action can be obtained by time changing a reducible
action.

Question 3.5
Is every group-irreducible Anosov R2-action either a time change of a product or homoge-
neous?
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